Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 42(19): e113880, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37602956

RESUMO

Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the epigenetic mechanisms that regulate DFP differentiation are not known. Our objective was to use multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanism that governs its differentiation potential. Our initial results indicated that the overall transcription profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage-specific genes. Surprisingly, the repressive chromatin profile of DFPs renders them unable to reform the skin in allograft assays despite their multipotent potential. We hypothesized that chromatin derepression was modulated by the H3K27me3 demethylase, Kdm6b/Jmjd3. Dermal fibroblast-specific deletion of Kdm6b/Jmjd3 in mice resulted in adipocyte compartment ablation and inhibition of mature dermal papilla functions, confirmed by additional single-cell RNA-seq, ChIP-seq, and allografting assays. We conclude that DFPs are functionally derepressed during murine skin development by Kdm6b/Jmjd3. Our studies therefore reveal a multimodal understanding of how DFPs differentiate into distinct fibroblast lineages and provide a novel publicly available multiomics search tool.


Assuntos
Cromatina , Histonas , Animais , Camundongos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Diferenciação Celular/genética , Desmetilação , Fibroblastos/metabolismo
2.
bioRxiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945417

RESUMO

Dermal Fibroblast Progenitors (DFPs) differentiate into distinct fibroblast lineages during skin development. However, the mechanisms that regulate lineage commitment of naive dermal progenitors to form niches around the hair follicle, dermis, and hypodermis, are unknown. In our study, we used multimodal single-cell approaches, epigenetic assays, and allografting techniques to define a DFP state and the mechanisms that govern its differentiation potential. Our results indicate that the overall chromatin profile of DFPs is repressed by H3K27me3 and has inaccessible chromatin at lineage specific genes. Surprisingly, the repressed chromatin profile of DFPs renders them unable to reform skin in allograft assays despite their multipotent potential. Distinct fibroblast lineages, such as the dermal papilla and adipocytes contained specific chromatin profiles that were de-repressed during late embryogenesis by the H3K27-me3 demethylase, Kdm6b/Jmjd3. Tissue-specific deletion of Kdm6b/Jmjd3 resulted in ablating the adipocyte compartment and inhibiting mature dermal papilla functions in single-cell-RNA-seq, ChIPseq, and allografting assays. Altogether our studies reveal a mechanistic multimodal understanding of how DFPs differentiate into distinct fibroblast lineages, and we provide a novel multiomic search-tool within skinregeneration.org.

3.
J Invest Dermatol ; 142(7): 1812-1823.e3, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34922949

RESUMO

One of the keys to achieving skin regeneration lies within understanding the heterogeneity of neonatal fibroblasts, which support skin regeneration. However, the molecular underpinnings regulating the cellular states and fates of these cells are not fully understood. To investigate this, we performed a parallel multiomics analysis by processing neonatal murine skin for single-cell Assay for Transposase-Accessible Chromatin sequencing and single-cell RNA sequencing separately. Our approach revealed that fibroblast clusters could be sorted into papillary and reticular lineages on the basis of transcriptome profiling, as previously reported. However, single-cell Assay for Transposase-Accessible Chromatin sequencing analysis of neonatal fibroblast lineage markers, such as Dpp4/Cd26, Corin, and Dlk1 along with markers of myofibroblasts, revealed accessible chromatin in all fibroblast populations despite their lineage-specific transcriptome profiles. These results suggest that accessible chromatin does not always translate to gene expression and that many fibroblast lineage markers reflect a fibroblast state, which includes neonatal papillary fibroblasts, reticular fibroblasts, and myofibroblasts. This analysis also provides a possible explanation as to why these marker genes can be promiscuously expressed in different fibroblast populations under different conditions. Our single-cell Assay for Transposase-Accessible Chromatin sequencing analysis also revealed that the functional lineage restriction between dermal papilla and adipocyte fates is regulated by distinct chromatin landscapes. Finally, we have developed a webtool for our multiomics analysis: https://skinregeneration.org/scatacseq-and-scrnaseq-data-from-thompson-et-al-2021-2/.


Assuntos
Fibroblastos , Análise de Célula Única , Animais , Cromatina/genética , Cromatina/metabolismo , Fibroblastos/metabolismo , Camundongos , Pele , Transposases/metabolismo
4.
J Invest Dermatol ; 141(7): 1627-1629, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34167721

RESUMO

Single-cell RNA sequencing (scRNA-seq) provides an unprecedented ability to investigate cellular heterogeneity in entire organs and tissues, including human skin. Ascensión et al. (2020) combined and reanalyzed human skin scRNA-seq datasets to uncover new insights into fibroblast heterogeneity. This work demonstrates that new discoveries can be made from published data on the basis of principles of these three Rs: Reuse, Refine, and Resource.


Assuntos
Perfilação da Expressão Gênica , Análise de Célula Única , Sequência de Bases , Humanos , Análise de Sequência de RNA , Sequenciamento do Exoma
5.
Elife ; 92020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32990218

RESUMO

Scars are a serious health concern for burn victims and individuals with skin conditions associated with wound healing. Here, we identify regenerative factors in neonatal murine skin that transforms adult skin to regenerate instead of only repairing wounds with a scar, without perturbing development and homeostasis. Using scRNA-seq to probe unsorted cells from regenerating, scarring, homeostatic, and developing skin, we identified neonatal papillary fibroblasts that form a transient regenerative cell type that promotes healthy skin regeneration in young skin. These fibroblasts are defined by the expression of a canonical Wnt transcription factor Lef1 and using gain- and loss of function genetic mouse models, we demonstrate that Lef1 expression in fibroblasts primes the adult skin macroenvironment to enhance skin repair, including regeneration of hair follicles with arrector pili muscles in healed wounds. Finally, we share our genomic data in an interactive, searchable companion website (https://skinregeneration.org/). Together, these data and resources provide a platform to leverage the regenerative abilities of neonatal skin to develop clinically tractable solutions that promote the regeneration of adult tissue.


Assuntos
Fibroblastos/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Pele/metabolismo , Cicatrização/fisiologia , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/citologia
6.
PLoS Pathog ; 16(5): e1008600, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32453775

RESUMO

Apicomplexan parasites cause severe disease in both humans and their domesticated animals. Since these parasites readily develop drug resistance, development of new, effective drugs to treat infection caused by these parasites is an ongoing challenge for the medical and veterinary communities. We hypothesized that invertebrate-bacterial symbioses might be a rich source of anti-apicomplexan compounds because invertebrates are susceptible to infections with gregarines, parasites that are ancestral to all apicomplexans. We chose to explore the therapeutic potential of shipworm symbiotic bacteria as they are bona fide symbionts, are easily grown in axenic culture and have genomes rich in secondary metabolite loci [1,2]. Two strains of the shipworm symbiotic bacterium, Teredinibacter turnerae, were screened for activity against Toxoplasma gondii and one strain, T7901, exhibited activity against intracellular stages of the parasite. Bioassay-guided fractionation identified tartrolon E (trtE) as the source of the activity. TrtE has an EC50 of 3 nM against T. gondii, acts directly on the parasite itself and kills the parasites after two hours of treatment. TrtE exhibits nanomolar to picomolar level activity against Cryptosporidium, Plasmodium, Babesia, Theileria, and Sarcocystis; parasites representing all branches of the apicomplexan phylogenetic tree. The compound also proved effective against Cryptosporidium parvum infection in neonatal mice, indicating that trtE may be a potential lead compound for preclinical development. Identification of a promising new compound after such limited screening strongly encourages further mining of invertebrate symbionts for new anti-parasitic therapeutics.


Assuntos
Antiprotozoários , Apicomplexa/crescimento & desenvolvimento , Bivalves/microbiologia , Gammaproteobacteria/metabolismo , Simbiose , Animais , Antiprotozoários/metabolismo , Antiprotozoários/farmacologia , Camundongos , Infecções por Protozoários/tratamento farmacológico
7.
Methods Mol Biol ; 2052: 87-102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31452158

RESUMO

Development of an effective vaccine against cryptosporidiosis is a medical and veterinary priority. However, many putative Cryptosporidium vaccine candidates such as surface and apical complex antigens are posttranslationally modified with O- and N-linked glycans. This presents a significant challenge to understanding the functions of these antigens and the immune responses to them. Isolation of large amounts of native antigen from Cryptosporidium oocysts is expensive and is only feasible for C. parvum antigens. Here, we describe a method of producing recombinant, functional Cryptosporidium glycoprotein antigens in Toxoplasma gondii. These functional recombinant proteins can be used to investigate the role of glycotopes in Cryptosporidium immune responses and parasite-host cell interactions.


Assuntos
Antígenos de Protozoários/isolamento & purificação , Cryptosporidium parvum/metabolismo , Glicoproteínas/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Toxoplasma/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/metabolismo , Linhagem Celular , Cromatografia de Afinidade/métodos , Cryptosporidium/crescimento & desenvolvimento , Cryptosporidium/imunologia , Cryptosporidium/metabolismo , Cryptosporidium parvum/crescimento & desenvolvimento , Cryptosporidium parvum/imunologia , Imunofluorescência/métodos , Expressão Gênica , Vetores Genéticos , Glicoproteínas/genética , Glicoproteínas/imunologia , Glicoproteínas/metabolismo , Humanos , Oocistos/crescimento & desenvolvimento , Oocistos/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxoplasma/genética , Transfecção/métodos , Fluxo de Trabalho
8.
Stem Cells ; 33(3): 988-98, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25447755

RESUMO

Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent.


Assuntos
Epiderme/fisiologia , Folículo Piloso/fisiologia , Regeneração/fisiologia , Células-Tronco/fisiologia , Animais , Morte Celular/genética , Diferenciação Celular/genética , Epiderme/metabolismo , Folículo Piloso/citologia , Camundongos , Camundongos Transgênicos , Células-Tronco/citologia , Células-Tronco/metabolismo
9.
EMBO J ; 31(3): 616-29, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22117221

RESUMO

Setd8/PR-Set7/KMT5a-dependent mono-methylation of histone H4 at lysine 20 is essential for mitosis of cultured cells; yet, the functional roles of Setd8 in complex mammalian tissues are unknown. We use skin as a model system to explore how Setd8 may regulate cell division in vivo. Deletion of Setd8 in undifferentiated layers of the mouse epidermis impaired both proliferation and differentiation processes. Long-lived epidermal progenitor cells are lost in the absence of Setd8, leading to an irreversible loss of sebaceous glands and interfollicular epidermis. We show that Setd8 is a transcriptional target of c-Myc and an essential mediator of Myc-induced epidermal differentiation. Deletion of Setd8 in c-Myc-overexpressing skin blocks proliferation and differentiation and causes apoptosis. Increased apoptosis may be explained by our discovery that p63, an essential transcription factor for epidermal commitment is lost, while p53 is gained upon removal of Setd8. Both overexpression of p63 and deletion of p53 rescue Setd8-induced apoptosis. Thus, Setd8 is a crucial inhibitor of apoptosis in skin and its activity is essential for epidermal stem cell survival, proliferation and differentiation.


Assuntos
Histona-Lisina N-Metiltransferase/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fenômenos Fisiológicos da Pele , Animais , Apoptose , Sequência de Bases , Diferenciação Celular , Proliferação de Células , Primers do DNA , Camundongos , Reação em Cadeia da Polimerase , Ligação Proteica , Pele/metabolismo
10.
Circulation ; 115(4): 432-41, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17242276

RESUMO

BACKGROUND: Mutations in the ankyrin-B gene (ANK2) cause type 4 long-QT syndrome and have been described in kindreds with other arrhythmias. The frequency of ANK2 variants in large populations and molecular mechanisms underlying the variability in the clinical phenotypes are not established. More importantly, there is no cellular explanation for the range of severity of cardiac phenotypes associated with specific ANK2 variants. METHODS AND RESULTS: We performed a comprehensive screen of ANK2 in populations (control, congenital arrhythmia, drug-induced long-QT syndrome) of different ethnicities to discover unidentified ANK2 variants. We identified 7 novel nonsynonymous ANK2 variants; 4 displayed abnormal activity in cardiomyocytes. Including the 4 new variants, 9 human ANK2 loss-of-function variants have been identified. However, the clinical phenotypes associated with these variants vary strikingly, from no obvious phenotype to manifest long-QT syndrome and sudden death, suggesting that mutants confer a spectrum of cellular phenotypes. We then characterized the relative severity of loss-of-function properties of all 9 nonsynonymous ANK2 variants identified to date in primary cardiomyocytes and identified a range of in vitro phenotypes, including wild-type, simple loss-of-function, and severe loss-of-function activity, seen with the variants causing severe human phenotypes. CONCLUSIONS: We present the first description of differences in cellular phenotypes conferred by specific ANK2 variants. We propose that the various degrees of ankyrin-B loss of function contribute to the range of severity of cardiac dysfunction. These data identify ANK2 variants as modulators of human arrhythmias, provide the first insight into the clinical spectrum of "ankyrin-B syndrome," and reinforce the role of ankyrin-B-dependent protein interactions in regulating cardiac electrogenesis.


Assuntos
Anquirinas/genética , Arritmias Cardíacas/etnologia , Arritmias Cardíacas/genética , Variação Genética , Miócitos Cardíacos/fisiologia , Idoso , Animais , Arritmias Cardíacas/induzido quimicamente , Povo Asiático/genética , População Negra/genética , Citoesqueleto/fisiologia , Feminino , Genótipo , Humanos , Canais Iônicos/fisiologia , Síndrome do QT Longo/induzido quimicamente , Síndrome do QT Longo/etnologia , Síndrome do QT Longo/genética , Masculino , Americanos Mexicanos/genética , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Fenótipo , Taquicardia Ventricular/induzido quimicamente , Taquicardia Ventricular/etnologia , Taquicardia Ventricular/genética , Torsades de Pointes/induzido quimicamente , Torsades de Pointes/etnologia , Torsades de Pointes/genética , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...